Lesson No. 07

1.1. Size Mismatch Errors

If we change the directive in the last example from DW to DB, the program will still assemble and debug without errors, however the results will not be the same as expected. When the first operand is read 0A05 will be read in the register which was actually two operands place in consecutive byte memory locations. The second number will be read as 000F which is the zero byte of num4 appended to the 15 of num3. The third number will be junk depending on the current state of the machine. According to our data declaration the third number should be at 0114 but it is accessed at 011D calculated with word offsets. This is a logical error of the program. To keep the declarations and their access synchronized is the responsibility of the programmer and not the assembler. The assembler allows the programmer to do everything he wants to do, and that can possibly run on the processor. The assembler only keeps us from writing illegal instructions which the processor cannot execute. This is the difference between a syntax error and a logic error. So the assembler and debugger have both done what we asked them to do but the programmer asked them to do the wrong chore.

The programmer is responsible for accessing the data as word if it was declared as a word and accessing it as a byte if it was declared as a byte. The word case is shown in lot of previous examples. If however the intent is to treat it as a byte the following code shows the appropriate way.

	
	Example 2.5

	001

002

003

004

005

006

007

008

009

010

011

012

013
	; a program to add three numbers using byte variables

[org 0x0100]

 mov al, [num1] ; load first number in al

 mov bl, [num1+1] ; load second number in bl

 add al, bl ; accumulate sum in al

 mov bl, [num1+2] ; load third number in bl

 add al, bl ; accumulate sum in al

 mov [num1+3], al ; store sum at num1+3

 mov ax, 0x4c00 ; terminate program

 int 0x21

num1: db 5, 10, 15, 0

	003
	The number is read in AL register which is a byte register since the memory location read is also of byte size.

	005
	The second number is now placed at num1+1 instead of num1+2 because of byte offsets.

	013
	To declare data db is used instead of dw so that each data declared occupies one byte only.

Inside the debugger we observe that the AL register takes appropriate values and the sum is calculated and stored in num1+3. This time there is no alignment or synchronization error. The key thing to understand here is that the processor does not match defines to accesses. It is the programmer’s responsibility. In general assembly language gives a lot of power to the programmer but power comes with responsibility. Assembly language programming is not a difficult task but a responsible one.

In the above examples, the processor knew the size of the data movement operation from the size of the register involved, for example in “mov ax, [num1]” memory can be accessed as byte or as word, it has no hard and fast size, but the AX register tells that this operation has to be a word operation. Similarly in “mov al, [num1]” the AL register tells that this operation has to be a byte operation. However in “mov ax, bl” the AX register tells that the operation has to be a word operation while BL tells that this has to be a byte operation. The assembler will declare that this is an illegal instruction. A 5Kg bag cannot fit inside a 1Kg bag and according to Intel a 1Kg cannot also fit in a 5Kg bag. They must match in size. The instruction “mov [num1], [num2]” is illegal as previously discussed not because of data movement size but because memory to memory moves are not allowed at all.

The instruction “mov [num1], 5” is legal but there is no way for the processor to know the data movement size in this operation. The variable num1 can be treated as a byte or as a word and similarly 5 can be treated as a byte or as a word. Such instructions are declared ambiguous by the assembler. The assembler has no way to guess the intent of the programmer as it previously did using the size of the register involved but there is no register involved this time. And memory is a linear array and label is an address in it. There is no size associated with a label. Therefore to resolve its ambiguity we clearly tell our intent to the assembler in one of the following ways.

mov byte [num1], 5
mov word [num1], 5

1.2. Register Indirect Addressing

We have done very elementary data access till now. Assume that the numbers we had were 100 and not just three. This way of adding them will cost us 200 instructions. There must be some method to do a task repeatedly on data placed in consecutive memory cells. The key to this is the need for some register that can hold the address of data. So that we can change the address to access some other cell of memory using the same instruction. In direct addressing mode the memory cell accessed was fixed inside the instruction. There is another method in which the address can be placed in a register so that it can be changed. For the following example we will take 10 instead of 100 numbers but the algorithm is extensible to any size.

There are four registers in iAPX88 architecture that can hold address of data and they are BX, BP, SI, and DI. There are minute differences in their working which will be discussed later. For the current example, we will use the BX register and we will take just three numbers and extend the concept with more numbers in later examples.

	
	Example 2.6

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015
	; a program to add three numbers using indirect addressing

[org 0x100]

 mov bx, num1 ; point bx to first number

 mov ax, [bx] ; load first number in ax

 add bx, 2 ; advance bx to second number

 add ax, [bx] ; add second number to ax

 add bx, 2 ; advance bx to third number

 add ax, [bx] ; add third number to ax

 add bx, 2 ; advance bx to result

 mov [bx], ax ; store sum at num1+6

 mov ax, 0x4c00 ; terminate program

 int 0x21

num1: dw 5, 10, 15, 0

	003
	Observe that no square brackets around num1 are used this time. The address is loaded in bx and not the contents. Value of num1 is 0005 and the address is 0117. So BX will now contain 0117.

	004
	Brackets are now used around BX. In iapx88 architecture brackets can be used around BX, BP, SI, and DI only. In iapx386 more registers are allowed. The instruction will be read as “move into ax the contents of the memory location whose address is in bx.” Now since bx contains the address of num1 the contents of num1 are transferred to the ax register. Without square brackets the meaning of the instruction would have been totally different.

	005
	This instruction is changing the address. Since we have words not bytes, we add two to bx so that it points to the next word in memory. BX now contains 0119 the address of the second word in memory. This was the mechanism to change addresses that we needed.

Inside the debugger we observe that the first instruction is “mov bx, 011C.” A constant is moved into BX. This is because we did not use the square brackets around “num1.” The address of “num1” has moved to 011C because the code size has changed due to changed instructions. In the second instruction BX points to 011C and the value read in AX is 0005 which can be verified from the data window. After the addition BX points to 011E containing 000A, our next word, and so on. This way the BX register points to our words one after another and we can add them using the same instruction “mov ax, [bx]” without fixing the address of our data in the instructions. We can also subtract from BX to point to previous cells. The address to be accessed is now in total program control.

One thing that we needed in our problem to add hundred numbers was the capability to change address. The second thing we need is a way to repeat the same instruction and a way to know that the repetition is done a 100 times, a terminal condition for the repetition. For the task we are introducing two new instructions that you should read and understand as simple English language concepts. For simplicity only 10 numbers are added in this example. The algorithm is extensible to any size.

	
	Example 2.7

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018
	; a program to add ten numbers

[org 0x0100]

 mov bx, num1 ; point bx to first number

 mov cx, 10 ; load count of numbers in cx

 mov ax, 0 ; initialize sum to zero

l1: add ax, [bx] ; add number to ax

 add bx, 2 ; advance bx to next number

 sub cx, 1 ; numbers to be added reduced

 jnz l1 ; if numbers remain add next

 mov [total], ax ; write back sum in memory

 mov ax, 0x4c00 ; terminate program

 int 0x21

num1: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

total: dw 0

	006
	Labels can be used on code as well. Just like data labels they remember the address at which they are used. The assembler does not differentiate between code labels and data labels. The programmer is responsible for using a data label as data and a code label as code. The label l1 in this case is the address of the following instruction.

	009
	SUB is the counterpart to ADD with the same rules as that of the ADD instruction.

	010
	JNZ stands for “jump if not zero.” NZ is the condition in this instruction. So the instruction is read as “jump to the location l1 if the zero flag is not set.” And revisiting the zero flag definition “the zero flag is set if the last mathematical or logical operation has produced a zero in its destination.” For example “mov ax, 0” will not set the zero flag as it is not a mathematical or logical instruction. However subtraction and addition will set it. Also it is set even when the destination is not a register. Now consider the subtraction immediately preceding it. If the CX register becomes zero as a result of this subtraction the zero flag will be set and the jump will be taken. And jump to l1, the processor needs to be told each and everything and the destination is an important part of every jump. Just like when we ask someone to go, we mention go to this market or that house. The processor is much more logical than us and needs the destination in every instruction that asks it to go somewhere. The processor will load l1 in the IP register and resume execution from there. The processor will blindly go to the label we mention even if it contains data and not code.

The CX register is used as a counter in this example, BX contains the changing address, while AX accumulates the result. We have formed a loop in assembly language that executes until its condition remains true. Inside the debugger we can observe that the subtract instruction clears the zero flag the first nine times and sets it on the tenth time. While the jump instruction moves execution to address l1 the first nine times and to the following line the tenth time. The jump instruction breaks program flow.

The JNZ instruction is from the program control group and is a conditional jump, meaning that if the condition NZ is true (ZF=0) it will jump to the address mentioned and otherwise it will progress to the next instruction. It is a selection between two paths. If the condition is true go right and otherwise go left. Or we can say if the weather is hot, go this way, and if it is cold, go this way. Conditional jump is the most important instruction, as it gives the processor decision making capability, so it must be given a careful thought. Some processors call it branch, probably a more logical name for it, however the functionality is same. Intel chose to name it “jump.”

An important thing in the above example is that a register is used to reference memory so this form of access is called register indirect memory access. We used the BX register for it and the B in BX and BP stands for base therefore we call register indirect memory access using BX or BP, “based addressing.” Similarly when SI or DI is used we name the method “indexed addressing.” They have the same functionality, with minor differences because of which the two are called base and index. The differences will be explained later, however for the above example SI or DI could be used as well, but we would name it indexed addressing instead of based addressing.

